Traction patterns of tumor cells.

نویسندگان

  • D Ambrosi
  • A Duperray
  • V Peschetola
  • C Verdier
چکیده

The traction exerted by a cell on a planar deformable substrate can be indirectly obtained on the basis of the displacement field of the underlying layer. The usual methodology used to address this inverse problem is based on the exploitation of the Green tensor of the linear elasticity problem in a half space (Boussinesq problem), coupled with a minimization algorithm under force penalization. A possible alternative strategy is to exploit an adjoint equation, obtained on the basis of a suitable minimization requirement. The resulting system of coupled elliptic partial differential equations is applied here to determine the force field per unit surface generated by T24 tumor cells on a polyacrylamide substrate. The shear stress obtained by numerical integration provides quantitative insight of the traction field and is a promising tool to investigate the spatial pattern of force per unit surface generated in cell motion, particularly in the case of such cancer cells.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Long-range mechanical force in colony branching and tumor invasion

The most concerned factors for cancer prognosis are tumor invasion and metastasis. The patterns of tumor invasion can be characterized as random infiltration to surrounding extracellular matrix (ECM) or formation of long-range path for collective migration. Recent studies indicate that mechanical force plays an important role in tumor infiltration and collective migration. However, how tumor co...

متن کامل

Analysis of Contractility and Invasion Potential of Two Canine Mammary Tumor Cell Lines

Cancer cells are surrounded by a mechanically and biochemically distinct microenvironment that undergoes dynamic changes throughout the neoplastic progression. During this progression, some cancer cells acquire abnormal characteristics that potentiate their escape from the primary tumor site, to establish secondary tumors in distant organs. Recent studies with several human cancer cell lines ha...

متن کامل

A stochastic mathematical model of avascular tumor growth patterns and its treatment by means of noises

Due to the rate increase in cancer incidence, many researchers in different fields have been conducting studies on cancer-related phenomena. Most studies are conducted to focus on cellular and molecular aspects of cancerous diseases and treatment strategies. Physicists have been using mathematical modeling and simulation to explain the growth pattern of tumors. Although most published studies i...

متن کامل

Two Dimensional Mathematical Model of Tumor Angiogenesis: Coupling of Avascular Growth and Vascularization

Introduction As a tumor grows, the demand for oxygen and nutrients increases and it grows further if acquires the ability to induce angiogenesis. In this study, we aimed to present a two-dimensional continuous mathematical model for avascular tumor growth, coupled with a discrete model of angiogenesis. Materials and Methods In the avascular growth model, tumor is considered as a single mass, wh...

متن کامل

THE IN VITRO GROWTH PROPERTIES OF CELL LINES FROM EPSTEIN-BARR VIRUS-INDUCED TAMARIN TUMORS AND TAMARIN B CELLS TR ANSFORMED BY EPSTEIN BARR VIRUS

EBV-carrying human cell lines, depending on whether the cells are derived from Burkitt's lymphoma (BL) tumor biopsies or transformed by EBV in vitro, have different growth properties in vitro. In contrast, there are no clear differences between tamarin tumor lines and tamarin LCLs in vitro. Both types of tamarin cell lines could grow in agarose and formed colonies unlike human LCLs, althoug...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of mathematical biology

دوره 58 1-2  شماره 

صفحات  -

تاریخ انتشار 2009